Cicloalcanos

Capítulo 4

Cicloalcanos C_nH_{2n}

Tabela. Propriedades físicas de alguns ciclolacanos

cicloalcano	Ponto de ebulição	Ponto de fusão	Densidade d ²⁰
Ciclopropano	-32,7	-127,6	
Ciclobutano	12,5	-50	
Ciclopentano	49,3	-93	0,7457
Ciclo-hexano	80,7	6,6	0,7786
Ciclo-heptano	118,5	-12	0,8098
ciclooctano	150,0	14,3	0,8349

metilciclo-hexano

etilciclopentano

1,1-dimetilciclo-hexano

3-ciclopropilpentano

$$H_3C$$
 H_3
 CH_3

2-ciclobutil-3-metilbutano

Exercício 5.5 Usando figuras geométricas simples e estruturas de linha, represente os compostos seguintes. Compare suas estruturas com representações estruturais completas.

- (a) 1,1,3-trimetilcicloexano
- (b) 3-ciclopentilpentano
- (c) 1-cloro-4-clorometilcicloexano
- (d) 1,1,2,2-tetrametilciclopropano

Calor de formação

O calor de formação ΔH^{0}_{f} de um composto é definido como a entalpia da reação de sua formação a partir dos elementos nos seus estados padrão para gerar o composto. O estado padrão de cada elemento é geralmente o estado mais estável daquele elemento a 25 0 C e 1 atm de pressão. O estado padrão do carbono é considerado como sendo a grafite. Por definição, ΔH^{0}_{f} para um elemento no seu estado padrão é zero. Assim o calor padrão de formação do butano é -30,36 kcal mol⁻¹, e o do 2-metilpropano é -32,41 kcal mol⁻¹.

4C (grafite) +
$$5H_2 \rightarrow n\text{-}C_4H_{10}$$
 (g) $\Delta H_f^0 = -30,36 \text{ kcal mol}^{-1}$

4C (grafite) + 5H₂
$$\rightarrow$$
 (CH₃)₃CH (g) $\Delta H_f^0 = -32,41$ kcal mol⁻¹

A partir desses dados é possível calcular a calor envolvido no seguinte equilíbrio:

$$CH_3$$
 $H_3CCH_2CH_2CH_3$
 H_3CCHCH_3
 $\Delta H^0_f = -2,05 \text{ kcal mol}^{-1}$

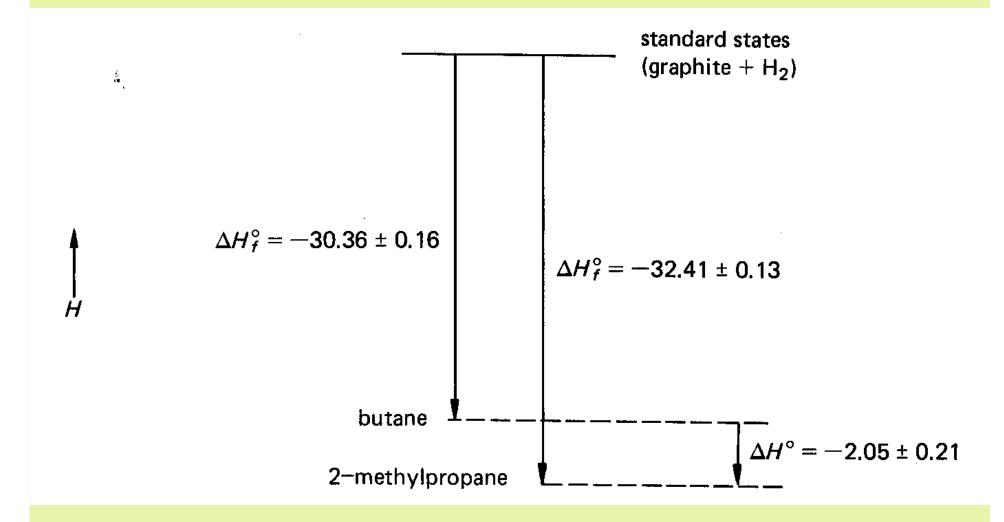


Figura 5.13. Os calores de formação do butano e 2-metilpropano, ilustrando o uso de valores de calores de formação e de entalpia para uma reação.

Tabela 5.14. Alguns calores de formação.

Composto	Calor de formação a 25 °C	
	ΔH_f^0 , kcal mol ⁻¹	
CH ₄	- 17,9	
CH ₃ CH ₃	- 20,2	
CH ₃ CH ₂ CH ₃	- 24,8	
CH ₃ CH ₂ CH ₂ CH ₃	- 30,4	
$(CH_3)_3CH$	- 32,4	
CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	- 35,1	
(CH ₃) ₂ CHCH ₂ CH ₂ CH ₃	- 36,9	
$(CH_3)_4C$	- 40,3	
CO	- 26,4	
$H_2O(g)$	- 57,8	
H ₂ O (1)	- 68,3	
H_2	0	
O_2	0	
C (grafite)	0	

diferenças

2,3

4,6

5,6

2,0

Cicloalcanos: Tensão Anelar

Tensão anelar é um efeito de energia que pode ser claramente visto nos calores de formação dos cicloalcanos. Nos alcanos cada grupo CH_2 contribui com cerca de -5 kcal mol⁻¹ para o $\Delta H^{\rm o}_{\rm f}$ de uma molécula. Isto é, cada grupo CH_2 adicionado a uma cadeia de uma alcano aumenta 5 kcal mol⁻¹ em seu calor de formação.

$$\Delta H_{f}^{0}$$
, kcal mol⁻¹

4 C + 5 H₂ \longrightarrow $n\text{-C}_{4}\text{H}_{10}$ -30,4

5 C + 6 H₂ \longrightarrow $n\text{-C}_{5}\text{H}_{12}$ -35,1

6 C + 7 H₂ \longrightarrow $n\text{-C}_{6}\text{H}_{14}$ -39,9

Uma vez que cicloalcanos possuem fórmula empírica $(CH_2)_n$, pode-se obter o $\Delta H^o{}_f$ para cada grupo CH_2 simplesmente dividindo o $\Delta H^o{}_f$ para cada molécula por n. Examinando a Tabela 5.5 seguinte, ela mostra que a maioria destes cicloalcanos possui valores negativos menores de $\Delta H^o{}_f/n$ do que o valor médio do alcano de cerca de = -5 kcal mol⁻¹. Isto é, alguns cicloalcanos possuem um maior conteúdo de energia por grupo CH_2 do que um típico alcano acíclico. *Este excesso de energia é chamado de tensão anelar*. O excesso de energia total de um cicloalcano é simplesmente o excesso de energia por CH_2 multiplicado pelo número de grupos CH_2 de um alcano particular.

Tabela 5.5. $\Delta H_{\rm f}^{\rm o}$ de cicloalcanos, $({\rm CH_2})_{\rm n}$

n	cicloalcano	ΔH ^o _f kcal mol ⁻¹	ΔH° _f /n kcal mol ⁻¹ por grupo CH ₂	Tensão anelar total, kcal mol ⁻¹
2	Etileno	+ 12,5	+ 6,2	22
3	Ciclopropano	+ 12,7	+ 4,2	27
4	Ciclobutano	+ 6,8	+ 1,7	26
5	Ciclopentano	-18,4	- 3,7	6
6	Ciclo-hexano	- 29,5	-4,9	(0)
7	Ciclo-heptano	- 28,2	- 4,0	6
8	Ciclooctano	- 29,7	- 3,7	10
9	Ciclononano	- 31,7	- 3,5	13
10	ciclodecano	- 36,9	- 3,7	12
11	cicloundecano	- 42,9	- 3,9	11
12	ciclododecano	- 55,0	- 4,6	4
13	Ciclotridecano	- 58,9	- 4,5	5
14	ciclotetradecano	- 66,9	- 4,8	2

Tensão anelar para o cicloexano:

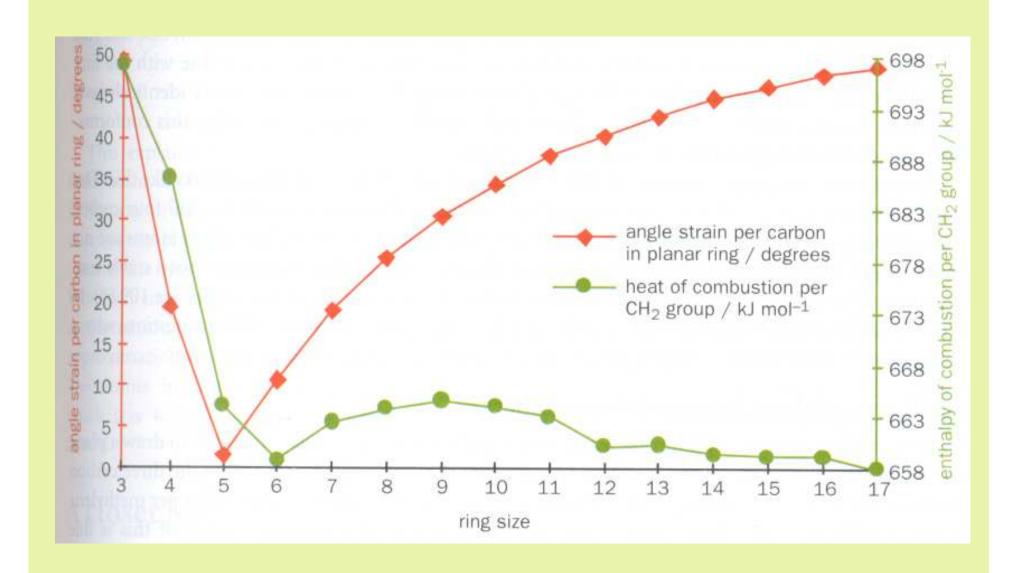
 $\Delta H^{\rm o}_{\rm f} =$ - 29,5 kcal mol⁻¹ $\Delta H^{\rm o}_{\rm f}$ / n = -29,5/6 = -4,92 kcal mol⁻¹ este valor é semelhante aos valores por grupo CH₂ para alcanos acíclicos, e portanto o cicloexano é considerado livre de tensão.

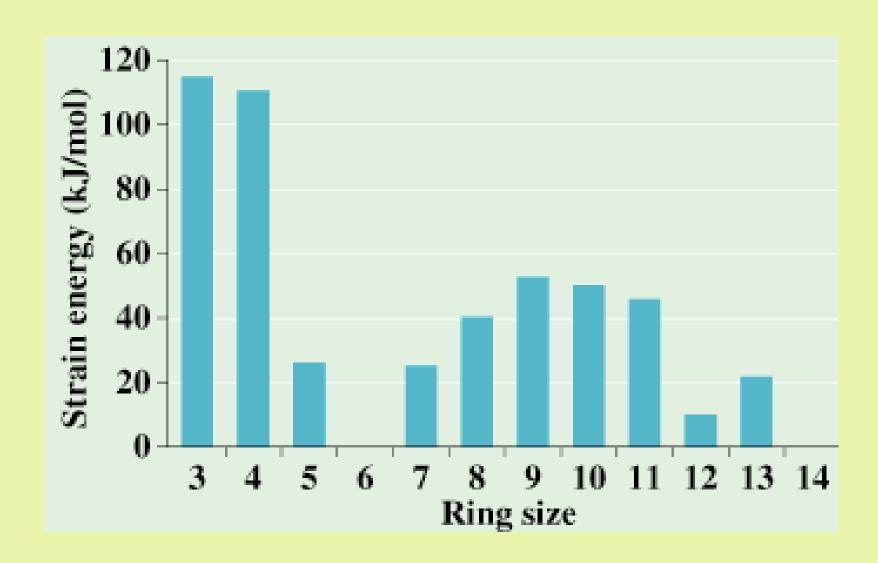
Tensão anelar para o ciclopentano:

$$5 \times (-4.92 \text{ kcal mol}^{-1}) = -24.6$$

portanto, ciclopentano = (-18,4) - (-24,6) = +6,2 kcal mol⁻¹

Ou seja, o ciclopentano é 6 kcal mol⁻¹ menos estável do que seria se cada grupo CH₂ estivesse sobre um hipotético estado livre de tensão.


Tensão anelar para o ciclopropano


$$3 \times (-4,92) = -14,76$$

Portanto, ciclopropano = $(+12,7) - (-14,76) = +27,46 \text{ kcal mol}^{-1}$

Ou seja, o ciclopropano é 27 kcal mol⁻¹ menos estável do que seria se cada grupo CH₂ estivesse sobre um hipotético estado livre de tensão.

O mesmo calculo pode ser estendido para os demais cicloalcanos conforme é mostrado na Tabela 5.5.

Cicloexano mostra essencialmente nenhuma tensão anelar: seus grupos CH₂ possuem o mesmo ΔH^{o}_{f} daqueles dos alcanos normais. Com a finalidade de comparar a tensão anelar de um particular cicloalcano, ciclo-hexano é considerado livre de tensão; ele é o padrão para efeito de comparação. Para o ciclo-hexano, $\Delta H_{\rm f}^{\rm o} = -29.5$ kcal mol⁻¹ e $\Delta H_{\rm f}^{\rm o}$ /n = -29.6/6 = -4.92 kcal mol⁻¹. Este valor é tomado com $\Delta H_{\rm f}^{\rm o}$ livre de tensão por grupo CH₂ de um sistema ciclico. Por exemplo, ΔH^{o}_{f} para um hipotético ciclopentano sem tensão seria $5 \times -4.92 \text{ kcal mol}^{-1} = -24.6 \text{ kcal mol}^{-1}$. Portanto, a energia de tensão para o ciclopentano = (-18,4) - (-24,6) = +6,2 kcal mol⁻¹. Em ouras palavras, o ciclopentano é cerca de 6 kcal mol⁻¹ menos estável do seria se cada grupo CH₂ estivesse em algum estado hipotético livre de tensão.

Tensão total ciclopropano = $+12.7 - (-3 \times 4.9) = 27.4 \text{ kcal mol}^{-1}$ Tensão total ciclobutano = $+6.8 - (-4 \times 4.9) = 26.4 \text{ kcal mol}^{-1}$ Tensão total ciclopentano = $-18.4 - (-5 \times 4.9) = 6.2 \text{ kcal mol}^{-1}$ Tensão total ciclo-hexano = 0

Exercício 5.8 Usando dados da Tabela anterior, verifique que a energia de tensão total para o ciclooctano é 10 kcal mol⁻¹.

A Natureza da Tensão Anelar

Anéis maiores do que 3 átomos não são planos.

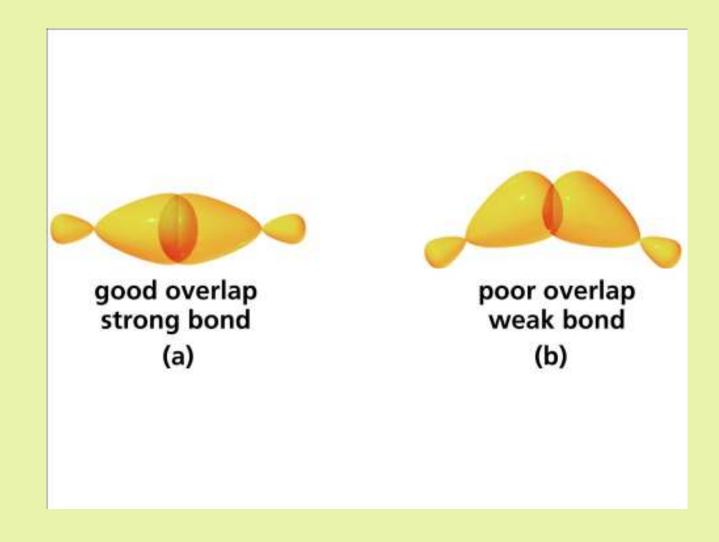
Moléculas cíclicas podem assumir conformações não planares para minimizar a **tensão angular** (resultado do distanciamento do valor do ângulo do cicloalcano do valor do ângulo tetraédrico normal de 109,5°) e a tensão torsional através de um franzimento ou pregueamento (dobradura) do anel.

Anéis maiores possuem mais possibilidades conformacionais (são mais flexíveis) do que anéis menores e são mais difíceis de serem analisados.

Sumário: Tipos de Tensão

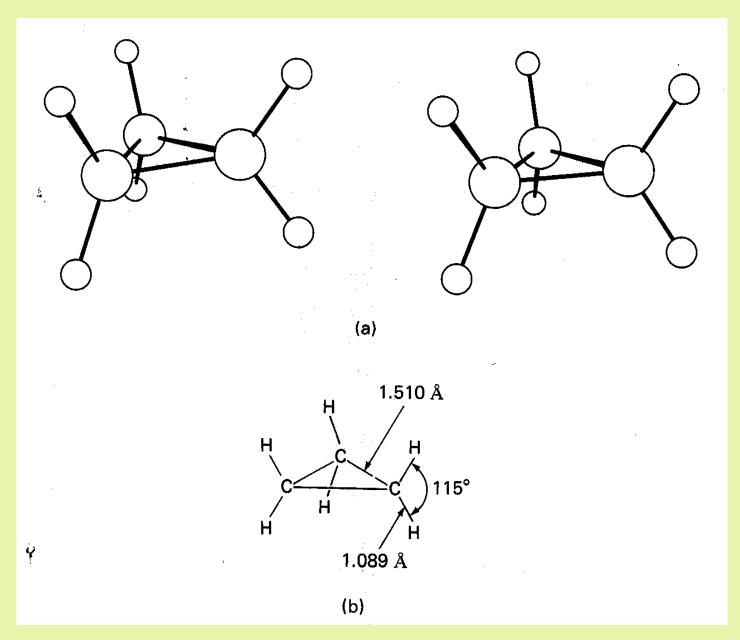
- Tensão angular expansão ou compressão dos ângulos diferentes do tetraédrico
- Tensão Torsional ligações eclipsadas das ligações dos átomos vizinhos
- Tensão Estérica (ou espacial) interações repulsivas entre átomos próximos não diretamente ligados

A tensão anelar inerente para uma dada molécula resulta de três contribuições distintas: tensão de ligação, eclipse de pares adjacentes de ligações carbonohidrogênio, ou interações não ligantes transanelar (colisão espacial de dois hidrogênios voltados para o interior do anel).

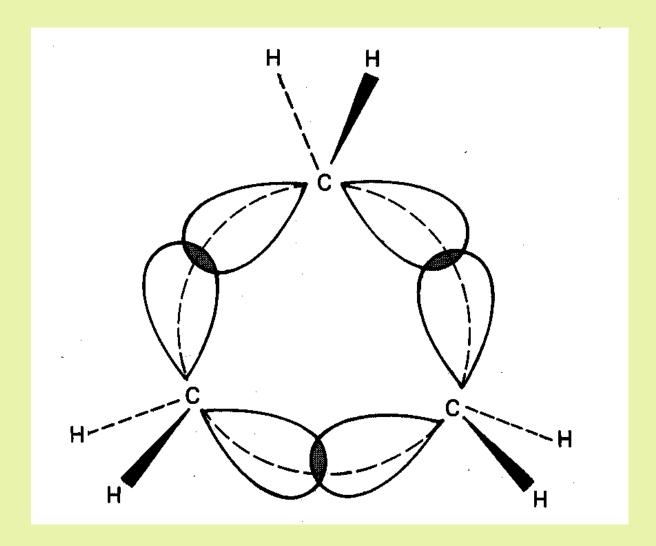

A ligação covalente é mais forte quando é formada pelo *overlap* de dois orbitais atômicos ao longo do eixo internuclear. A força da ligação é reduzida se o *overlap* dos orbitais constituintes não acontecer ao longo do eixo da ligação.

mais forte overlap mais eficiente

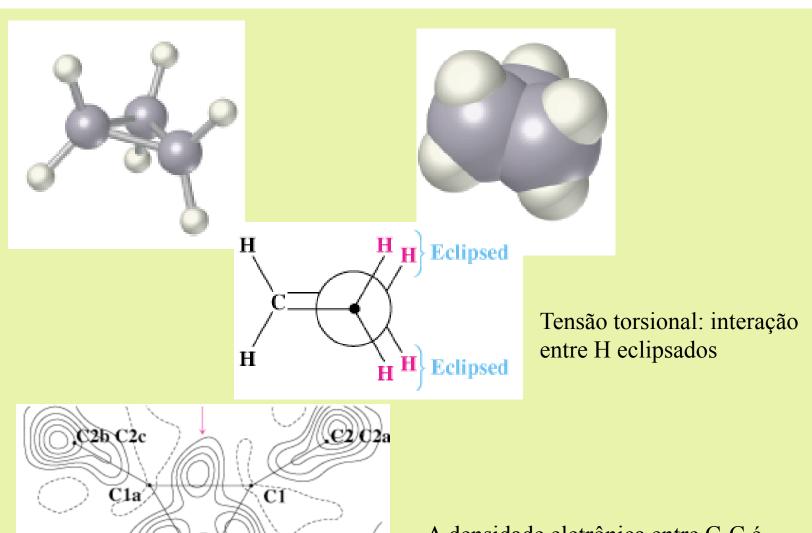
menos forte overlap menos eficiente



Ciclopropano

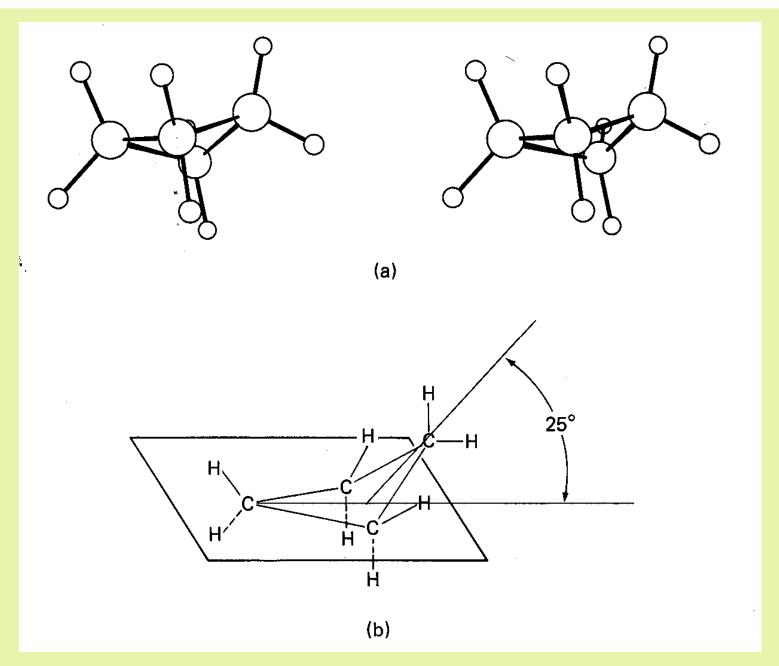

As ligações carbono-carbono no ciclopropano possuem maior caráter-p do que as ligações sp³ normais. Como resultado, os orbitais formam ligações curvas. Consequentemente, as ligações carbono-carbono no ciclopropano são mais fracas do que aquelas dos alcanos normais. Para compensar o maior caráter-p das ligações carbonocarbono, um maior caráter-s é usado nas ligações carbono-hidrogênio do ciclopropano. Em decorrência, estas ligações são mais curtas e mais fortes do que as ligações carbonohidrogênio de alquilas, e o ângulo é maior do que o tetraédrico. Outro fato que contribui para a tensão anelar do ciclopropano, é o eclipse entre as ligações carbono-hidrogênio. E muito importante é o ângulo das ligações C-C: 60° é uma diferença enorme em relação ângulo tetraédrico de uma ligação sp^3 . Já a diferença com orbitais p é menor, uma vez o ângulo entre orbitais p é de 90°.

Disso decorre o maior caráter p.

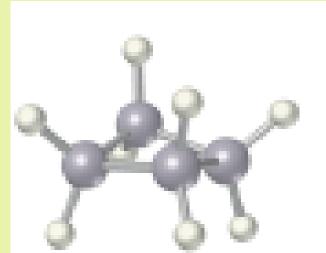

Ligação C-C mais curta (1,51 x 1,54Å) Ligação C-H mais curta (1,089 x 1,095Å)

Ciclopropano: (a) representação espacial; (b) estrutura geométrica

Estrutura orbital do anel ciclopropano mostrando a tensão da ligação curva.

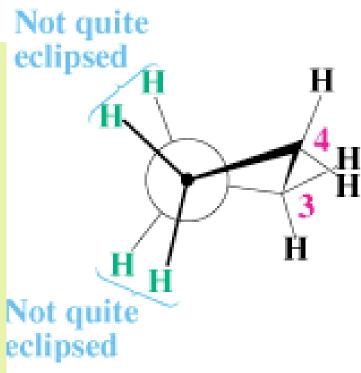

C2b C2c
C1a
C1
C1
C2d C2e

A densidade eletrônica entre C-C é deslocada para fora do eixo dessa ligação. McMmurry


Ciclobutano

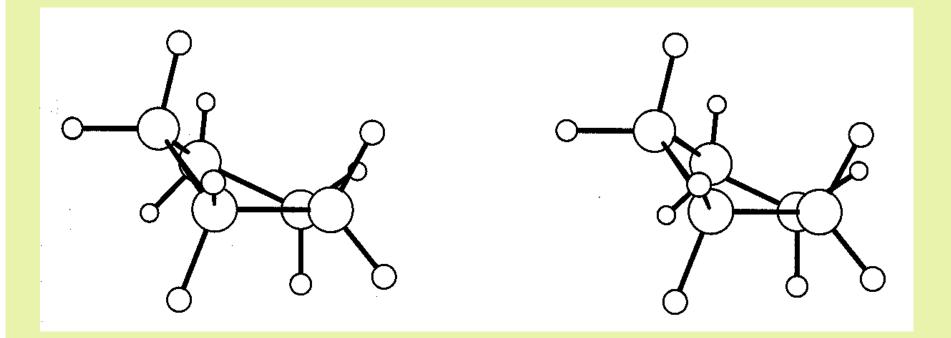

No ciclobutano os ângulos de 90 º não são tão pequenos como no ciclopropano. As ligações não são tão curvas, e portanto, possuem menos tensão anelar. Contudo, quatro ligações tensionadas em lugar de três, e existem oito pares de hidrogênios eclipsados no lugar de seis. Também o eclipse no ciclobutano plano seria mais importante do que no ciclopropano, pois os hidrogênios estão mais próximos. Como resultado, a tensão anelar total nestes dois compostos é mais ou menos a mesma.

Contudo, o ciclobutano, ao contrário do ciclopropano, existe na forma não plana numa conformação tipo envelope, tendo um dos grupos CH₂ num ângulo de 25° o em relação aos outros que estão num plano. O ângulo curvo aumenta a tensão angular, mas diminui a tensão torsional (decorrente de interações eclipsadas).

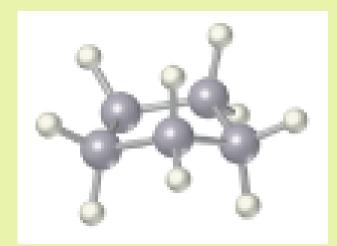


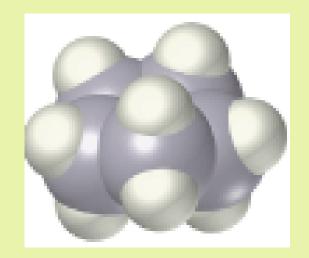
Ciclobutano curvo: (a) representação espacial; (b) Ilustrando o ângulo curvo.

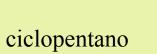
ciclobutano

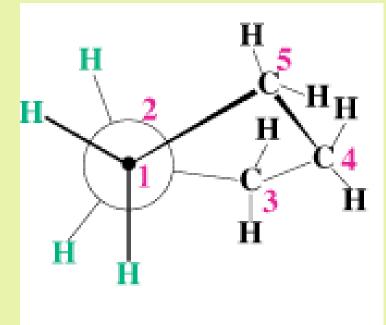


McMurry

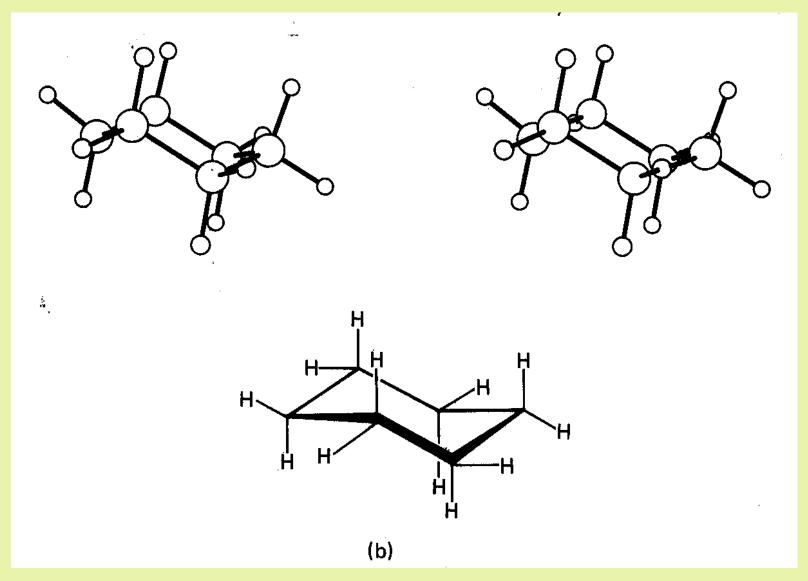

Ciclopentano

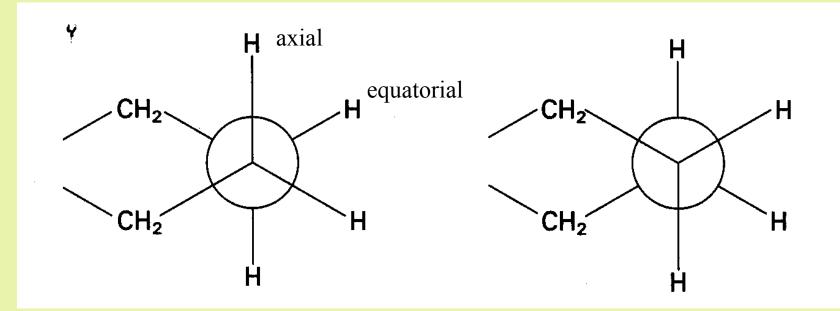

Uma estrutura de anel pentagonal plano para o ciclopentano teria ângulos C-C-C de 108 °, um valor tão próximo do ângulo tetraédrico normal de 109,5 ° que nenhuma tensão importante seria esperado. Contudo, todos os hidrogênios seriam totalmente eclipsados em tal estrutura e ela teria cerca de 10 kcal mol⁻¹ de energia de tensão.


A molécula encontra-se mais confortavelmente numa estrutura torcida em relação á estrutura plana. A estrutura real tem a forma de um envelope. O grupo metileno fora do plano dos demais está numa forma dispersa (estrelada) em relação aos seus vizinhos.

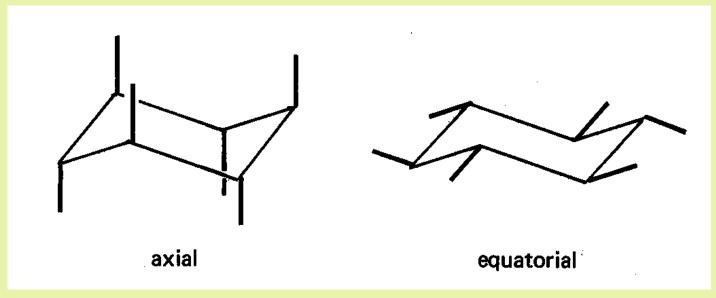


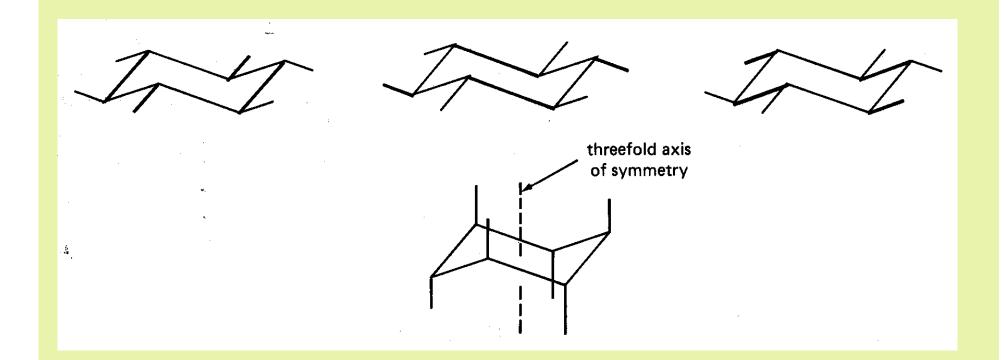
Estrutura espacial do ciclopentano



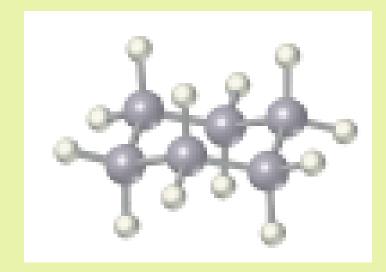


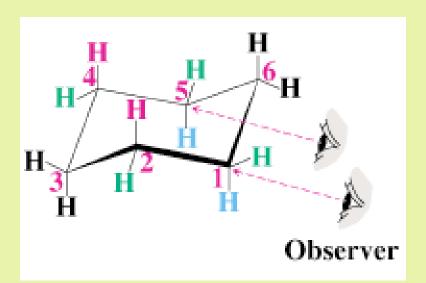
Ciclo-hexano (Cicloexano)

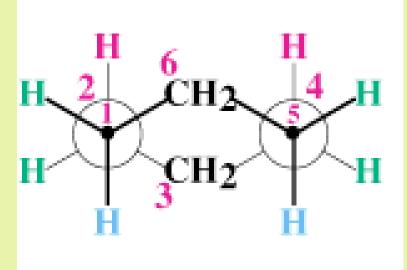

O ciclo-hexano é o mais importante dos carbociclos: sua unidade estrutural é largamente encontrada nos compostos de origem natural. Sua importância é decorrente do fato de que ele pode adotar uma conformação que é essencialmente livre de tensão. Esta estrutura é conhecida como conformação cadeira. Nesta estrutura os ângulos de ligação são todos próximos do tetraédrico, e todos os pares de hidrogênios são completamente dispersos com respeito um em relação aos outros. O ciclo-hexano não possui nem tensão angular e nem tensão de hidrogênios eclipsados (tensão torsional).


Conformação cadeira do cicloexano: (a) representação espacial; (b) representação em perspectiva convencional.

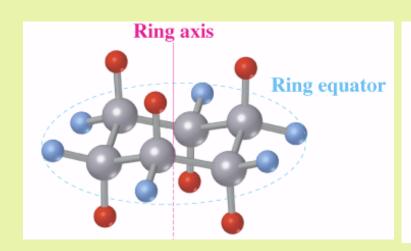

Projeções de Newman da ligações carbono-carbono do cicloexano.

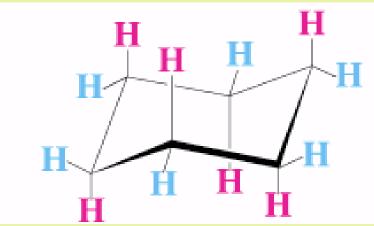

Ligações do cicloexano

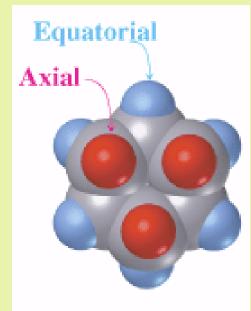

Construção de conformações cadeira.

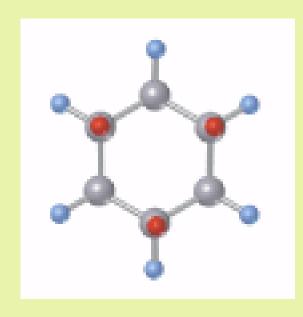


Duas conformações cadeira: (a) bolas colorida, equatorial; (b) bolas coloridas, axial. Esquerda: projeção normal; centro espacial.

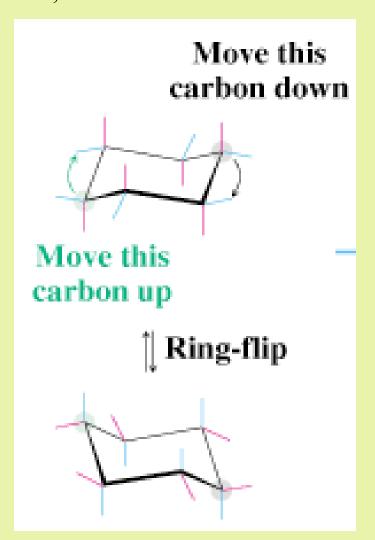


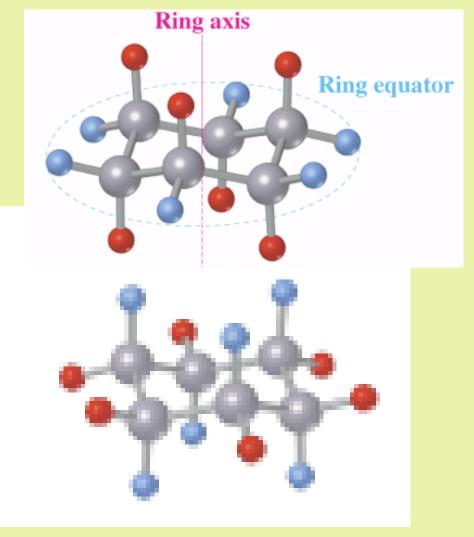


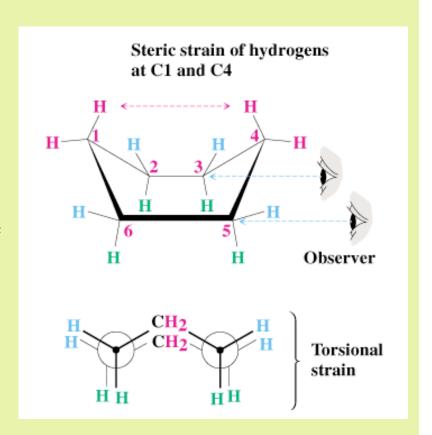


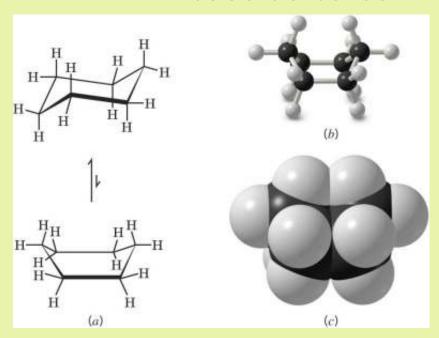

cicloexano

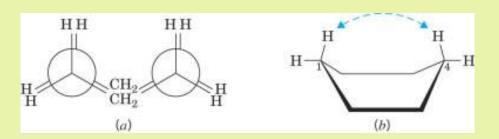
A conformação cadeira possui dois tipos distintos de hidrogênios. Estes hidrogênios diferentes correspondem a dois grupos de ligações exocíclicas, a *ligação axial e a equatorial*.





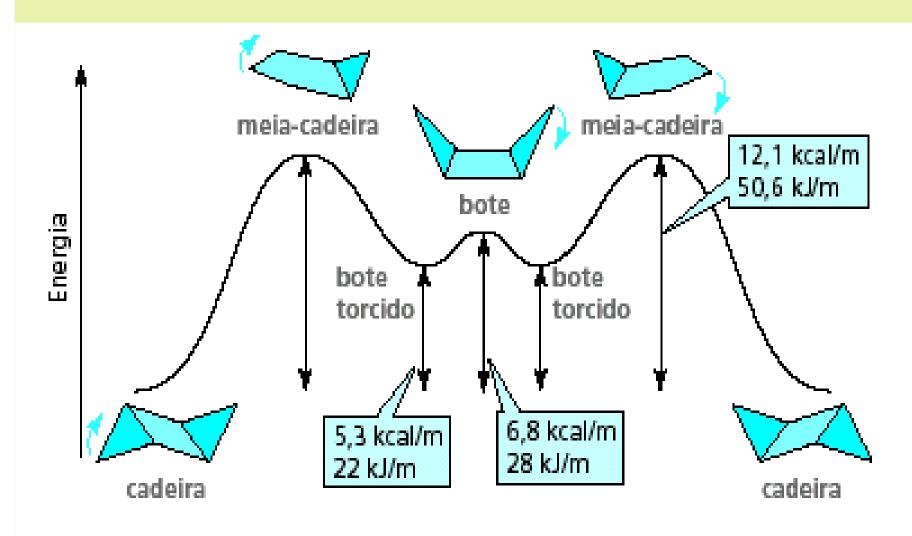

O ciclo-hexano possui uma estrutura dinâmica. Uma rotação sincronizada em torno das ligações carbono-carbono muda uma conformação cadeira em outra conformação cadeira. Esta interconversão envolve um uma barreira de energia de 10,8 kcal mol⁻¹.

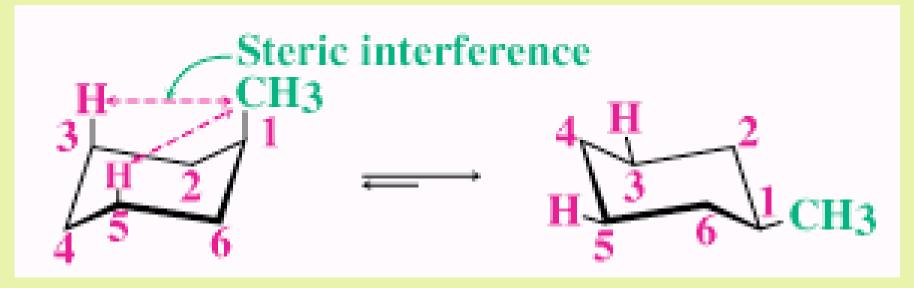



Cicloexano Barco

- Ciclohexano pode também estar numa conformação barco
- Menos estável do que o cicloexano cadeira devido a tensões estéricas e torsional
- C-2, 3, 5, 6 estão em um mesmo plano
- H em C-1 e C-4 se aproximam muito entre si para produzir considerável tensão estérica
- Quatro H-pares no C- 2, 3, 5, 6 produzem tensão torsional
- ~29 kJ/mol (7.0 kcal/mol) menos estável do que a cadeira

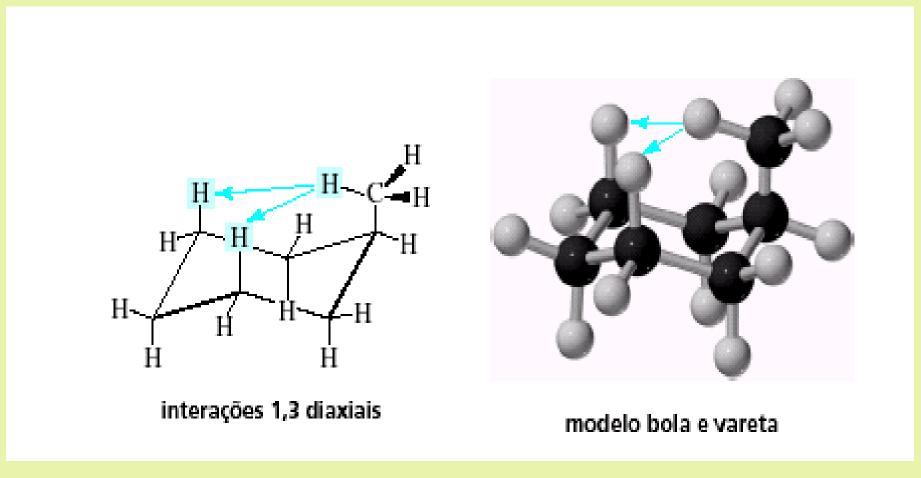
 A conformação barco (ou bote) é menos estável devido às interações dos Hs mastros de bandeiras e tensão torsional ao longo da base do barco.

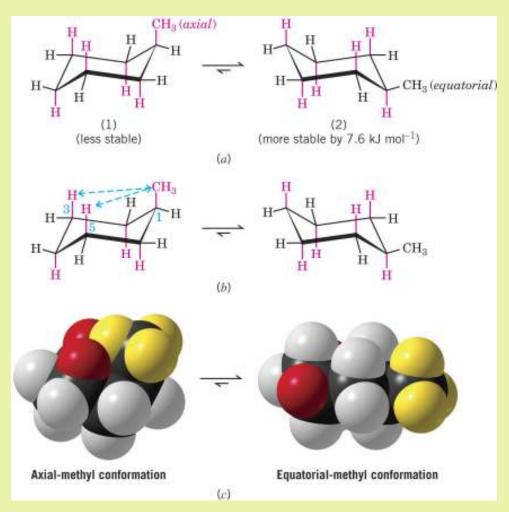



 A conformação torsida (twist) is intermediate in stability between the box

conformation

As conformações do ciclo-hexano e suas energias


Interações estéricas 1,3-diaxial


mais estável

Metilcicloexano

Tensão estérica de interação 1,3-diaxial no metil-ciclo-hexano

- Metilciclo-hexano é mais estável com a metila equatorial
 - Uma meitla axial tem uma interação 1,3-diaxial desfavorável com duas ligações C-H axiais distantes
 - Uma interação 1,3-diaxial é o equivalente a duas interações gauches do butano

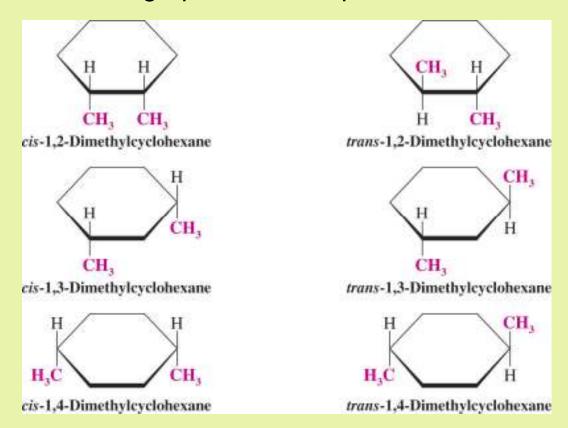
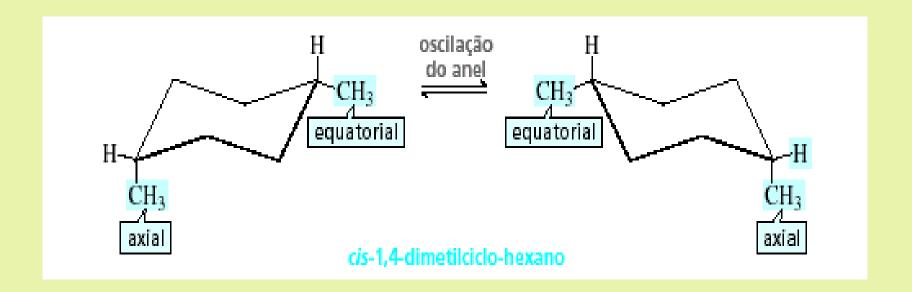
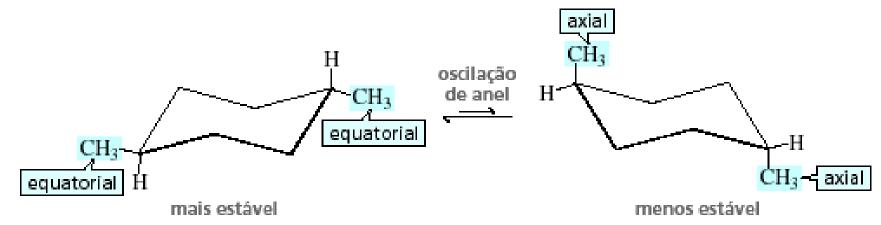
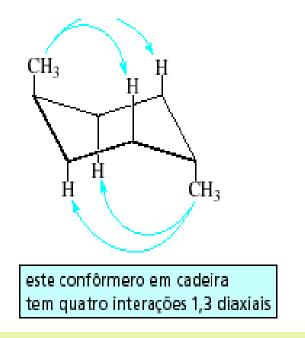

• Quanto maior o substituinte em um anel ciclo-hexano, mais o confôrmero com o substituinte na posição equatorial será favorecido.

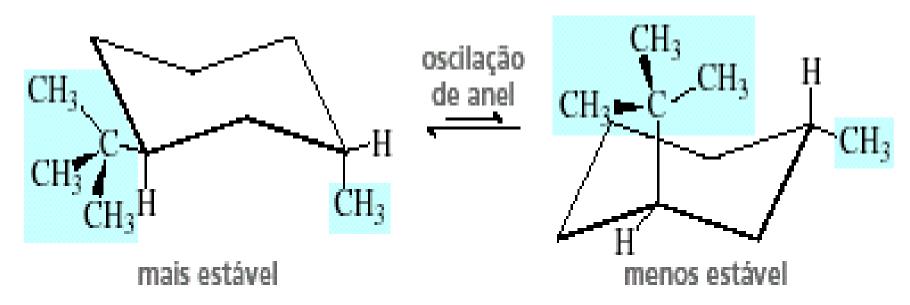
Tabela 2.10 Constantes de equilíbrio para vários cido-hexanos monossubstituídos a 25 °C			
Substituinte	Axial —— Equatorial	Substituinte	Axial Keq Equatorial
		CN	1,4
H CH ₃	1 18	F	1,5
CH ₃ CH ₂	21	Cl	2,4
CH ₃		Br	2,2
СН₃СН	35		2,2
CH ₃		I	2,2
CH₃Ć	4.800	НО	5,4
ĆH ₃			


 $K_{\text{eq}} = [\text{confôrmero equatorial}]/[\text{confôrmero axial}]$

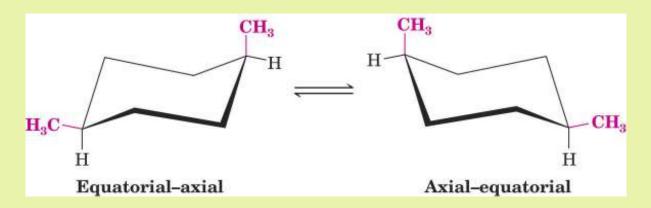
Cicloalcanos Dissubstituidos


- Podem esistir como pares de estereoisômeors cistrans
 - Cis: grupos do mesmo lado do anel
 - Trans: grupos do lado oposto do


Os confôrmeros em cadeira do *cis*-1,4-dimetil-ciclo-hexano


Os confôrmeros em cadeira do *trans*-1,4-dimetil-ciclo-hexano

trans-1,4-dimetilciclo-hexano



1-tert-butil-3-metil-ciclo-hexano

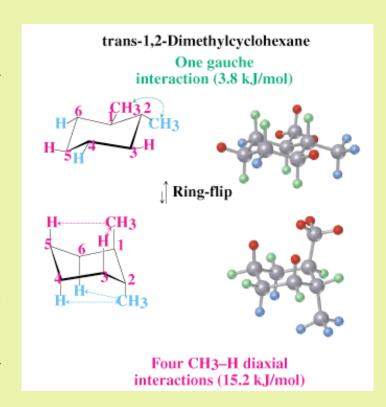
trans-1-terc-butil-3-metilciclo-hexano

 Cis-1,4-dimethylcyclohexane exists in an axialequatorial conformation

 A very large tert-butyl group is required to be in the more stable equatorial position

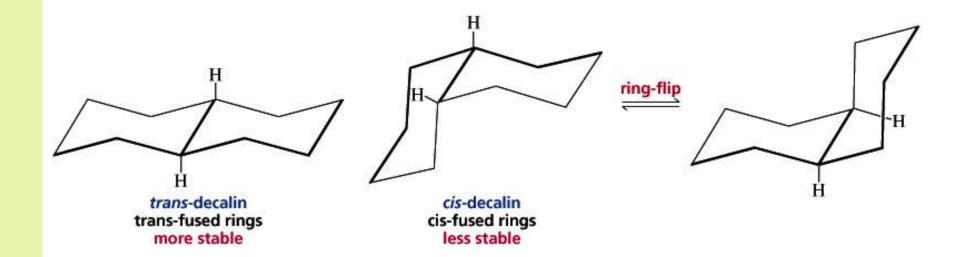
(eq)
$$H_3C-C$$
 CH_3
 H
 CH_3 (ax)

Trans-1,2-Dimetilcicloexano

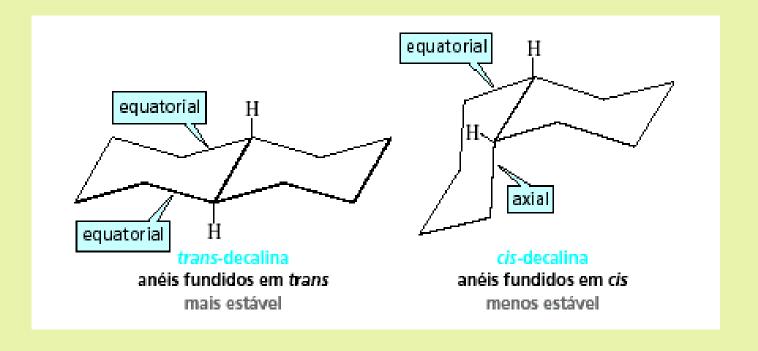

Grupos metilas estão em faces opostas do anel.

Uma conformação trans possui ambos grupos metilas equatoriais e apenas uma interação gauche entre metilas (3,8 kJ/mol) e nenhuma interação 1,3-diaxial.

A conformação invertida do anel possui ambos grupos metilas axiais com quatro interações 1,3-diaxiais.


Tensão estérica de 4 x 3,8 kJ/mol = 15,2 kJ/mol (3,6 kcal/mol) faz a conformação diaxial 11,4 kJ/mol (2,7 kcal/mol) menos favorável do que a conformação diequatorial.

trans-1,2-dimetilcicloexano existirá quase que exclusivamente (>99%) na conformação diequatorial.



Conformações de Moléculas Policíclicas

Conformações em Anéis Fundidos

• Anéis de ciclo-hexano fundidos em trans são mais estáveis que anéis de ciclo-hexano fundidos em cis.

