

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

PLANO DE DESENVOLVIMENTO DE DISCIPLINA

1º Semestre 2022

Disciplina	
Código	Nome
Q0521	Química Orgânica II

Turmas	Horário	Local
В	Seg: 14/16	IQ03
	Qui: 14/16	IQ03
	Sex: 10/12	IQ03

Docentes

Prof. Dr. Caio C. Oliveira (caio.oliveira@unicamp.br) - Sala A6-109

PED - Edson Leonardo Scarpa (e212079@dac.unicamp.br)

Disciplinas do 1S/2022

A condução das disciplinas do 1S/2022 está normatizada pela **GR 74/2021** que estabelece em seu **Art. 1º** - As aulas teóricas e práticas do 1º semestre de 2022 serão presenciais, sendo que as aulas teóricas deverão ser realizadas com até 100% da lotação estabelecida da sala de aula, caso não haja restrições sanitárias e no **§1º do Art. 1º.** - As condições sanitárias serão orientadas pelo Comitê Científico de Contingência do Coronavírus da Unicamp previamente ao começo do semestre.

Forma de Condução/Organização da Disciplina e das Avaliações

Descrição: As aulas serão presenciais. Caso necessário, as aulas podem ser ministradas de forma síncrona ou assíncrona através do GoogleMeet/Classroom.

As avaliações serão discursivas, com duração de 100 minutos.

Serão consideradas apenas as respostas escritas a caneta.

Caso precisem ser realizadas de forma remota, o prazo para resolução será de 100 minutos + 60 minutos para envio da avaliação.

Prazos de Entrega das Atividades e dos Resultados das Avaliações

Descrição: Os resultados das avaliações serão divulgados até 4 semanas após a avaliação.

Critérios de Avaliação e Aprovação

Descrição detalhada do método para o cálculo da média parcial e da nota final (que combine a média parcial e nota do exame)

Avaliação: (N1 + N2 + N3)/3 = M1

 $M1 \geq 5^{\star}$ (aprovado), M1 < 5, (Exame)

M1< 2,5, (reprovado)

*Caso a N1, N2 ou N3 seja inferior a 3,5 o estudante fará o Exame automaticamente.

Nota final = (Exame + M1)/2 = M2

 $M2 \geq 5$ (aprovado), M2 < 5 (reprovado)

O exame final substituirá a avaliação no dia de faltas abonadas pelo inciso V do artigo 72. (DAC)

Forma de Atendimento Extra-Classe

02/06 Eletrociclizações

Descrição: Serão realizadas até 4 monitorias semanais, das 13 às 13:50h, na sala IQ01.

Calend	lário	
Data		Atividade
14/03		Início das aulas do 1º período letivo de 2022
14 a 16/04		Feriado/Expediente Suspenso - Não haverá atividades
21 a 23/04		Feriado/Expediente Suspenso - Não haverá atividades
24/05		Avaliação e discussão de cursos - Não haverá aula
16 a 18/06		Feriado/Expediente Suspenso - Não haverá atividades
18 a 23	3/07	Semana de Estudos
09/07		Feriado/Expediente Suspenso - Não haverá atividades
25 a 30/07		Exames finais do 1º período letivo de 2022 e Turmas Especiais I
	•	e II.
Data	Atividade	
14/03	Introdução à disc	iplina
17/03	Aldeídos e Cetona	as – Reatividade/Acidez do Hidrogênio α
18/03		as – Oxidações e Reduções
21/03	Aldeídos e Cetona	as – Adições Nucleofílicas
24/03	Aldeídos e Cetona	as – Adições Nucleofílicas
25/03	Aula de Exercícios	5
28/03	Aldeídos e Cetona	as – Adições Nucleofílicas
31/03	Alquilação e Halo	genação no Carbono α
01/04	Aula de Exercícios	5
04/04	Condensação Ald	ólica
07/04	Enolatos e Reaçõo	es aldólicas
08/04	Aula de Exercícios	5
11/04	Enolatos e Reaçõe	es aldólicas
14/04	14/04 feriado	
15/04	feriado	
18/04	04 Ácidos Carboxílicos – Derivatizações	
-	/04 Feriado	
-	Feriado	
-	Reações na Posição α	
	Rearranjos molec	
•	Aula de Exercícios	
	Primeira avaliaçã	
		dos – Orbitais Moleculares
	Adições 1,2 x Adi	
-	Adição Conjugada	
•	Aula de Exercícios	
-	Não haverá aula	
-	Polienos – Orbitais Moleculares	
-	Dienos e Reação de Diels-Alder	
-	Aula de Exercícios	
-	Polienos – Orbita	
26/05	•	
-	Aula de Exercícios	
30/05	Reação de Diels-Alder	

03/06	Aula de Exercícios	
06/06	Segunda avaliação (N2)	
09/06	Eletrociclizações	
10/06	Benzeno e Aromaticidade	
13/06	Aula de Exercícios	
16/06	Feriado	
17/06	Feriado	
20/06	Substituição Eletrofílica Aromática	
23/06	Substituição Eletrofílica Aromática	
24/06	Aula de Exercícios	
27/06	Substituição Eletrofílica Aromática	
30/06	Substituição Eletrofílica Aromática	
01/07	Aula de Exercícios	
04/07	Substituição Eletrofílica Aromática	
07/07	Substituição Nucleofílica Aromática	
08/07	Substituição Nucleofílica Aromática	
11/07	Aula de Exercícios	
15/07	Terceira avaliação (N3)	
25/07	Exame	

Outras informações relevantes

- (1) Art. 56 do Regimento Geral de Graduação: São condições para aprovação: II nas disciplinas em que nota e frequência são adotadas como forma de avaliação obter **nota final** igual ou superior a 5,0 (cinco vírgula zero) e a frequência mínima estabelecida para a disciplina no Catálogo dos Cursos de Graduação; a frequência mínima de 75%.
- (2) **Sobre o Abono de Faltas**: os critérios do Abono de Faltas são definidos pelo artigo 72, do Regimento Geral de Graduação.
- (3) Quaisquer alterações no PDE, propostas pelo(a) Docente ou Discentes, no transcorrer do semestre, só poderão ser realizadas mediante a concordância do(a) Docente e Discentes, e autorização da Comissão de Graduação.

SEGUEM A EMENTA, PROGRAMA E BIBLIOGRAFIA

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

PROGRAMAS E BIBLIOGRAFIAS

Disciplina		
Código	Nome	
Q0521	Química Orgânica II	

Veto

OF:S-5 T:006 P:000 L:000 O:000 D:000 HS:006 SL:006 C:006 AV:N EX:S FM:75%

Pré-Req	Q0321
---------	-------

Ementa

Aldeídos e cetonas. Ácidos carboxílicos e derivados. Conjugação, sistemas alílicos, dienos e polienos, compostos carbonílicos insaturados, reações do tipo Diels-Alder. Benzeno e o anel aromático, substituição eletrofílica aromática. Haletos de arila e substituição nucleofílica aromática. Fenóis. Aminas. Outras funções nitrogenadas. Em todos os casos, relação entre características estruturais e reatividade, com ênfase em mecanismos, relações estereoquímicas envolvidas e ampla exemplificação de aplicações.

Programa

- 1. Aldeídos e cetonas.
- a) Estrutura e Propriedades. b) Ocorrência e uso. c) Descrição do grupo carbonila pela teoria de valência e teoria de orbitais moleculares. d) Métodos gerais de preparação de aldeídos e cetonas. e) Adição de nucléofilos de oxigênio e nitrogênio à aldeídos e cetonas: formação de hidratos, cetais e hemicetais, iminas, enaminas e compostos relacionados. f) Adição de nucleófilos de carbono: ácido cianídrico, reagentes organometálicos (reação de Grignard), ilídeos de fósforo (reação de Wittig) e fosfonatos. g) A influência de substituintes sobre a reatividade de aldeídos e cetonas. h) Aspectos estereoquímicos da adição de nucleófilos a aldeídos e cetonas. i) Métodos de redução e oxidação de aldeídos e cetonas: oxidação de Baeyer-Villiger, oxidação por compostos de Cr(VI), redução por hidretos metálicos, hidrogenação catalítica, reação de Clemmensen, reação de Wolff-Kischner.
- 2. Reações em posições a-carbonilas. Compostos carbonílicos insaturados.
- a) A acidez do hidrogênio na posição alfa-carbonila.
 b) Descrição pela teoria de ligação de valência e teoria dos orbitais moleculares.
 c) Adição nucleofílica vs. formação de enolatos.
 d) Racemizações.
 e) Reação de alfa-halogenação de aldeídos e cetonas.
 f) A reação aldólica: catálise ácida ou básica.
 g) Reação aldólica cruzada e intramolecular.
 h) Reação aldólica com enolatos pré-formados.
- 3. Ácidos carboxílicos.
- a) Estrutura e propriedades. b) Ocorrência e uso. c) Acidez. d) Efeitos indutivo e eletrônico sobre a acidez de ácidos carboxílicos. e) Fomação de sais, sabões, detergentes e tensoativos. f) Reações de esterificação. g) Formação de haletos de acila, anidridos, ésteres e amidas. h) Reducão do grupo carboxílico.
- 4. Derivados de ácidos carboxílicos: ésteres, amidas, haletos de acila, anidridos de ácidos carboxílicos.
- a) Estrutura e propriedades. b) Ocorrência e uso. c) Descrição pela teoria de ligação de valência e pela teoria de orbitais moleculares. d) Mecanismo geral da adição de nucleófilos a ácidos carboxílicos e derivados. f) A reação de hidrólise. g) Reações possíveis de interconversão dos derivados. h) A acidez do hidrogênio alfa em ácidos carboxílicos e

derivados. i) A formação de enolatos, reação de alquilação e reação aldólica. j) A adição de organometálicos a ácidos carboxílicos e derivados.

- 5. Conjugação, sistemas alílicos, dienos e polienos. Reações de Diels-Alder.
- a) O sistema alílico. b) Descrição pela teoria de ligação de valência e teoria de orbitais moleculares. c) Dienos. d) Estrutura e reatividade, adição 1,2 e adição 1,4. e) Compostos carbonílicos alfa,beta-insaturados. f) Estrutura e propriedades. g) A adição conjugada. h) A reação de Diels-Alder.
- 6. Benzeno e aromaticidade.
- a) Aspectos históricos. b) Estrutura, nomenclatura e propriedades. c) A energia de ressonância. d) Descrição pela teoria de ligação de valência e pela teoria dos orbitais moleculares. e) A regra de Hückel. f) Reações nas cadeias laterais de compostos aromáticosl: S_N2, S_N1, hidrogenólise, oxidação. g) Redução de Birch.
- 7. Reações de substituição eletrofílica aromática
- a) Reações de halogenação, nitração, sulfonação, alquilação e acilação de Friedel-Crafts.
- b) Efeitos de orientação em S_EAr. c) Efeitos de múltiplos substituintes.
- 8. Haletos de arila e substituição nucleofílica aromática. Fenóis.
- a) Substitutição nucleofílica aromática por mecanismo de adição-eliminação.
- b) Substitutição nucleofílica aromática por mecanismo de eliminação-adição. Benzino. Preparação de fenóis por substituição Nucleofílica aromática.
- a) Estrutura e propriedades. b) Fontes e uso. c) Basicidade e formação de sais. d) Formação de iminas e enaminas. e) Métodos de preparação: alquilação, redução de nitrocompostos, nitrilas, azidas, iminas e oximas. f) A aminação redutiva. g) Os rearranjos de Hofmann e de Curtius. h) Formação de sais de diazônio.
- 10. Outras funções orgânicas nitrogenadas.
- a) Nitrocompostos. b) Estrutura e propriedades. c) Isocianatos, carbamatos e uréias. d) Diazocompostos. e) A reação de Sandmeyer. f) Azocompostos.

- 1. G. Solomons, C. Fryhle, Organic Chemistry, 8th Ed., John Wiley, NY, 2004.
 2. J. Clayden, N. Greeves, S. Warren, Organic Chemistry, Oxford Press, 2001.
 3. F.A.Carey, Organic Chemistry, 5th Ed., McGraw Hill Inc., NY, 2004.
 4. A. Streitwieser, C. H. Heathcock, E. M. Kosower, Introduction to Organic Chemistry, 4th Ed., McMillan Publishers, NY, 1992.

Critérios de Avaliação

Critérios de avaliação definidos pelo Professor, com base no disposto na Seção I – Normas Gerais, Capítulo V – Da Avaliação do Aluno na Disciplina, do Regimento Geral de Graduação. Frequência: 75 % (* O abono de faltas será considerado dentro do previsto no capítulo VI, seção X, artigo 72 do Regimento Geral de Graduação)