

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

PLANO DE DESENVOLVIMENTO DE DISCIPLINA

1º Semestre - 2019

Disciplina			
Código	Nome		
QI-345	Química de Coordenação		

Turmas	Horário	Local
Α	Segunda-Feira 19-21 hs	IQ-04
В	Terça-Feira 14-16 hs	IQ-04

Docentes e Auxiliares

Prof. Jackson Dirceu Megiatto Junior – <u>jdmj@unicamp.br</u> Luis Enrique Santa Cruz Huamaní (PED) - <u>l161437@dac.unicamp.br</u>

Critérios de Avaliação e Aprovação

Nessa disciplina serão realizadas duas avaliações, A1 e A2. A nota final do curso será dada pela expressão:

$$M_F = \left(\frac{A1 + A2}{2}\right)$$

- Se $M_F \ge 5.0 \rightarrow$ aluno está Aprovado.
- Se $M_F < 5,0 \rightarrow$ o aluno fará *Exame*; neste caso a média será dada pela expressão:

$$M_{Final} = \frac{M_F + Exame}{2}$$
 e, assim:

 $M_{Final} \ge 5.0 \rightarrow$ o aluno será Aprovado.

M_{Final} < 5,0 → o aluno será Reprovado.

Calendário

Calendário seguido será o DAC, incluindo feriados, semanas de estudos e exame. As datas propostas para as avaliações descritas abaixo poderão ser alteradas a critério do Professor. No dia 21/05/2019, não haverá atividades devido a avaliação de curso pelos alunos.

Avaliações – Datas Propostas				
Turmas	1º Avaliação	2º Avaliação	Exame	
В	06/05/2019 as 19:00 hs	24/06/2019 as 19:00 hs	15/07/2019 as 19:00 hs	
Α	07/05/2019 as 14:00 hs	25/06/2019 as 14:00 hs	16/07/2019 as 14:00 hs	

Outras informações relevantes

Freqüência: o aluno com freqüência **inferior a 75%** das aulas ministradas será considerado **reprovado**. O abono de faltas será considerado dentro do previsto no capítulo VI, seção X, artigo 72 do Manual do Aluno.

- Celular, qualquer equipamento *wireless* e notebooks devem ser mantidos desligados durante todo o período de aula (Portaria Interna CID No. 013/2008)
- Será tolerado atraso de no máximo 15 minutos. Ao aluno que chegar após esse horário não será permitido sua entrada em sala de aula.
- Não haverá emissão de notas de prova e/ou exame por E-mail. As notas serão disponibilizadas eletronicamente via Moodle ou Google Scholar.
- A ausência previamente avisada e justificada em alguma avaliação poderá, a critério do Professor, ser compensada com o Exame no final do curso. Não haverá provas substitutivas.

SEGUEM ABAIXO, A EMENTA, O PROGRAMA E A BIBLIOGRAFIA DA DISCIPLINA

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE QUÍMICA

PROGRAMAS E BIBLIOGRAFIAS

Disciplina				
Código	Nome			
QI345	Química de Coordenação			

Vetor								
OF:S-5 T	:002 P:000 L:0	00 0:002	D:000	HS:004	SL:002	C:004 AV:N	I EX:S FM:75%	

Pré-Req	QI 145
---------	--------

Ementa

Compostos de coordenação. Teorias de Ligação aplicadas aos compostos de coordenação. Introdução à espectroscopia eletrônica. Diagrama de Tanabe-Sugano. Mecanismos de reações de substituição e de reações de transferência de elétrons.

Programa

Compostos de coordenação: número de coordenação, estrutura, nomenclatura, isomeria. Teorias de ligação: campo ligante e orbitais moleculares para geometrias octaédrica, tetraédrica e quadrada.

Efeito Jahn-Teller. Série espectroquímica. Efeito nefelauxético.

Propriedades magnéticas de compostos de coordenação.

Introdução à espectroscopia eletrônica (acoplamento Russel-Saunders, termos espectroscópicos e regras de seleção). Interpretação de espectros eletrônicos e determinação dos parâmetros do campo ligante (10 Dq e B), diagramas de Orgel e de Tanabe-Sugano; espectros de transferência de carga metal-ligante e ligante-metal; Aspectos termodinâmicos (constantes de formação, efeito quelato e potenciais de oxirredução). Ligantes macrocíclicos.

Mecanismos de reações de substituição em complexos octaédricos e quadrados. Compostos lábeis e compostos inertes.

Efeito e influência trans.

Reações de oxidação-redução: mecanismos de esfera externa e de esfera interna.

Bibliografia

Bibliografia Básica

- G. L. Miessler, D. A. Tarr. Inorganic Chemistry. 4th ed., Harlow: Pearson, 2011. 1213p.
- J. E. Huheey, E. A. Keiter, R. L. Keiter. Inorganic Chemistry: Principles of Structure and Reactivity. 4th ed. New York:

Harper Collins, 1993. 964p.

C. É. Housecroft, A. G. Sharpe. Inorganic Chemistry. 4th ed. Upper Saddle River. NJ: Prentice-Hall, 2012. 754p.

Bibliografia Complementar

- D. F. Shriver, P. W. Atkins, C.H. Langford. Inorganic Chemistry. 2_{nd}. ed. Oxford : Oxford University Press, 1994. 819p.
- C. J. Jones. A química dos Elementos dos Blocos d e f. Porto Alegre: Bookman, 2002. 184p.
- D. Nicholls. Complexes and First-Row Transition Elements. New York: Elsevier, 1975. 215p. Material bibliográfico selecionado pelo docente.