Uma Introdução às Reações Orgânicas Ácidos e Bases Aula 7

♦ Reações e Seus Mecanismos

■ Existem quatro tipos gerais de reações orgânicas
 → Substituições

$$H_3C$$
— $Cl + Na^+OH^- \xrightarrow{H_2O} H_3C$ — $OH + Na^+Cl^-$

A substitution reaction

→ Adições

An addition reaction

→ Eliminações

$$H \xrightarrow{H} H$$

$$H \xrightarrow{C} C - C - H \xrightarrow{(-HBr)} H$$

$$H \xrightarrow{H} H$$

$$H \xrightarrow{H} H$$

An elimination reaction

→ Rearranjos

$$CH_3 \qquad C = C \qquad \xrightarrow{\text{acid cat.}} H_3C \qquad CH_3$$

$$CH_3 \qquad H \qquad H_3C \qquad CH_3$$

$$CH_3 \qquad CH_3 \qquad CH_3$$

A rearrangement

♦ Clivagem de Ligações Covalentes

Homólise

Radicals

Clivagem homolítica

Heterólise

$$A: B \longrightarrow A^+ + B^-$$
 Heterolytic bond cleavage

Clivagem heterolítica

- Reações heterolíticas quase sempre ocorrem nas ligações polarizadas
 - → A reação é frequentemente auxilada pela formação de uma nova ligação em uma outra molécula

- ♦ Introdução à Química Acido-Base
 - Definição de Brønsted-Lowry para Ácidos e Bases
 - → Ácido: uma substância que pode doar um próton
 - → Base: uma substância que pode aceitar um próton
 - **→** Exemplo
 - Cloreto de Hidrogênio é um ácido muito forte e essencialmente todas moléculas de HCI transferem seu próton para água

$$H - \ddot{O}: + H - \ddot{C}I: \longrightarrow H - \ddot{O} - H + : \ddot{C}I: - H$$
 $H \qquad H$

Base Acid Conjugate Conjugate (proton (proton acid base acceptor) donor) of H_2O of HCI

Exemplo

- → Cloreto de hidrogênio aquoso e hidróxido de sódio aquoso sodium são misturados
- → A reação é entre íons hidrônio e hidróxido

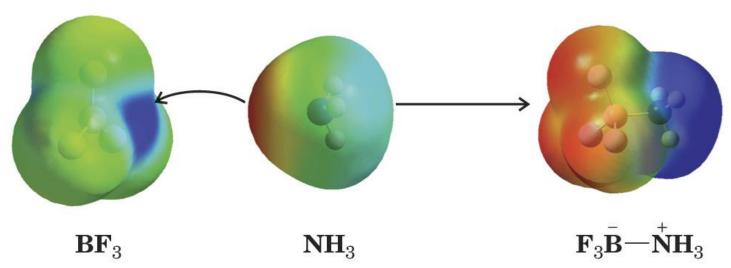
$$H - \ddot{O}^{+}H + \vdots \ddot{C}I^{:-} + Na^{+} - \vdots \ddot{O} - H \longrightarrow 2 H - \ddot{O}: + Na^{+} + \vdots \ddot{C}I^{:-}$$
 $H \longrightarrow Spectator ions$

$$H - \ddot{O} + H + \ddot{O} +$$

É uma reação de neutralização: um ácido (forte) é neutralizado por uma base (forte).

Definição de Lewis para Ácidos e Bases

- → Ácido de Lewis: aceptor de par de elétron
- → Base de Lewis: doador de par de elétron
- → Linhas curvadas mostram o movimento de elétrons para formar e quebrar ligações


Observe que está reação não tem água como solvente. O solvente deve ser amônia líquida.

A cor das hortênsias depende em parte da acidez relativa do solo.

- **♦** Cargas Opostas Atraem e Reagem
 - BF₃ e NH₃ reagem baseado em suas densidades relativas de elétrons
 - →BF₃ tem substancial carga positiva sobre o bóro
 - →NH₃ tem substancial carga negativa localizada no par isolado

Uma maneira de visualizar a distribuição de carga em uma molécula é num mapa de potencial eletrostático (MPE). Regiões mais negativas (ou positivas) são azuis. O vermelho indica maior carga negativa. O MPE também fornece uma indicação da forma global da molécula uma vez que mostra uma superfície de van der Waals.

- Heterólise de Ligações ao Carbono: Carbânions e Carbocátions
 - Reação pode ocorrer para dar um carbocátion ou carbânion dependendo da natureza de Z

 Carbocátions tem apenas 6 elétrons de valência e uma carga positiva

Carbânions têm 8 elétrons de valência e uma carga negativa

- Termos de Química Orgânica para Ácidos e Bases de Lewis
- Eletrófilos (reagentes "amantes de elétrons"): procuram elétrons para obter uma camada de elétrons de valência mais estável
 - Eles próprios são deficientes em elétrons e.g. carbocátions
 - → Nucleófilos (reagentes "amantes do núcleo"): procuram um próton ou algum outro centro carregado positivamente
 - Eles próprios são ricos em elétrons e.g. carbânions

♦ O Uso de Setas Curvadas na Ilustração de Reações

- → Setas curvadas mostram o fluxo elétrons numa reação
- → Uma seta inicia num sítio de maior densidade de elétron (uma ligação covalente ou par de elétron não compartilhado) e aponta para um sitio deficiente de elétron
- → Exemplo: Mecanismo de reação do HCI e água

going to the chlorine atom.

$$H_2O + HCl \longrightarrow H_3O^+ + Cl^ H_1O : + H_1O : + H_2O : + H_3O : +$$

♦ Força de Ácidos e Bases

- K_a e pK_a
 - → Ácido acético é um ácido relativamente fraco e uma solução 0.1 M é apenas capaz de protonar a água num estensão de cerca de 1%

$$CH_3 C OH + H_2O CH_3 C O^- + H_3O^+$$

→ A equação de equilíbrio para esta reação é:

$$K_{\text{eq}} = \frac{[\text{H}_3\text{O}^+] [\text{CH}_3\text{CO}_2^-]}{[\text{CH}_3\text{CO}_2\text{H}][\text{H}_2\text{O}]}$$

- → Ácidos diluidos tem uma concentração constante de água (cerca de 55.5 M) e a concentração de água pode ser desconsiderada para obter a constante de acidez (K_a)
 - [₱] K_a para ácido acético é 1.76 X 10⁻⁵

$$K_{\rm a} = K_{\rm eq} [{\rm H}_2{\rm O}] = \frac{[{\rm H}_3{\rm O}^+] [{\rm CH}_3{\rm CO}_2^-]}{[{\rm CH}_3{\rm CO}_2{\rm H}]}$$

- → Qualquer ácido fraco (HA) dissolvido em água obedece à expressão da constante geral *K*_a
 - Mais forte o ácido, maior será o K_a

$$K_{\rm a} = \frac{[{\rm H}_3{\rm O}^+][{\rm A}^-]}{[{\rm HA}]}$$

- → A acidez é usualmente expressada em termos de pK_a
 - P p K_a é o negativo do log de K_a
 - P O pK_a para o ácido acético é 4.75

$$pK_a = -\log K_a$$

→ Maior o pK_a, mais fraco é ácido

$$CH_3CO_2H < CF_3CO_2H < HCl$$

$$pK_a = 4.75 pK_a = 0 pK_a = -7$$
Weak acid Very strong acid

Increasing acid strength

			Conjugate	
	Acid	Approximate pK _a	Base	
Strongest acid	HSbF ₆	< -12	SbF ₆ ⁻	Weakest base
	HI	-10	[=	
	H ₂ SO ₄	-9	HSO_4^-	
	HBr	-9	Br ⁻	
	HCI	-7	CI-	
	$C_6H_5SQ_3H$	-6.5	$C_6H_5SO_3^-$	
	(CH ₃) ₂ OH	-3.8	(CH ₃) ₂ O	
	$(CH_3)_2C = OH$	-2.9	$(CH_3)_2C = O$	
	$CH_3\overset{+}{O}H_2$	-2.5	CH₃OH	
	H_3O^+	-1.74	H ₂ O	
	HNO ₃	-1.4	NO ₃ -	=
£	CF ₃ CO ₂ H	0.18	CF ₃ CO ₂ -	cre
en g	HF	3.2	F-	Increasing base strength
Increasing acid strength	CH ₃ CO ₂ H	4.75	CH ₃ CO ₂ ⁻	, p
acid	H ₂ CO ₃	6.35	HCO ₃ -	ase as
6	CH ₃ COCH ₂ COCH ₃	9.0	CH₃COCHCOCH₃	stre
easi	NH_4^+	9.2	NH_3	ngt
ncre	C ₆ H ₅ OH	9.9	C_6H_5O-	-
_	HCO ₃ ⁻	10.2	CO ₃ ²⁻	
	CH ₃ NH ₃ ⁺	10.6	CH ₃ NH ₂	
	H ₂ O	15.7	OH-	
	CH₃CH₂OH	16	CH ₃ CH ₂ O ⁻	
	(CH₃)₃COH	18	(CH ₃) ₃ CO ⁻	
	CH₃COCH₃	19.2	CH₂COCH₃	
	HC≡CH	25	HC≡C⁻	
	H_2	35	H-	
	NH_3	38	NH_2^-	
	$CH_2 = CH_2$	44	CH ₂ =CH ⁻	
Weakest acid	CH ₃ CH ₃	50	CH ₃ CH ₂ ⁻	Strongest base

♦ Prevendo a força das Bases

- Mais forte o ácido, mais fraco será a base conjugada
 - → Um ácido com baixo pK_a terá uma base conjugada fraca
 - → Cloreto é uma base muito fraca por que seu ácido conjugado HCl é um ácido muito forte

	Increasing base strength	
C1 ⁻	CH ₃ CO ₂ -	OH-
Very weak base pK_a of conjugate	Weak base pK_a of conjugate	Strong base pK_a of conjugate
acid (HCl) = -7	acid (CH_3CO_2H) = 4.75	acid $(H_2O) = 15.7$

- Metilamina é uma base mais forte do que a amônia
 - →O ácido conjugado da metilamina é mais fraco do que o ácido da amônia

Base Acid Conjugate Conjugate acid base
$$pK_{a} = 9.2 \xrightarrow{\text{Acido fraco}} \text{H}$$

$$\text{CH}_{3}\ddot{\text{NH}}_{2} + \text{H} = \ddot{\text{O}} - \text{H} \Longrightarrow \text{CH}_{3} - \text{N}^{\pm} - \text{H} + -: \ddot{\text{O}} - \text{H}$$

$$\text{Base Acid Conjugate acid base}$$

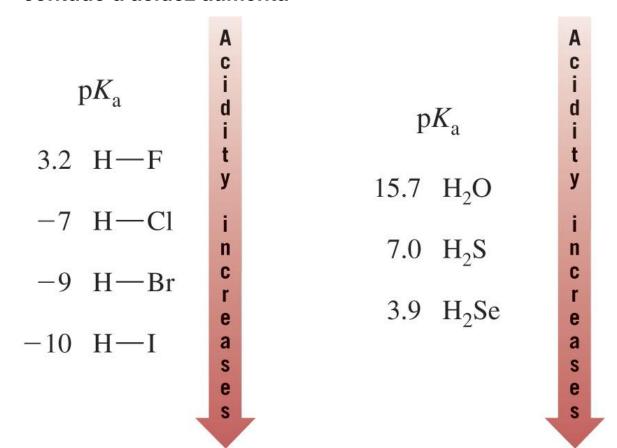
$$pK_{a} = 10.6$$

$$\text{Acido fraco}$$

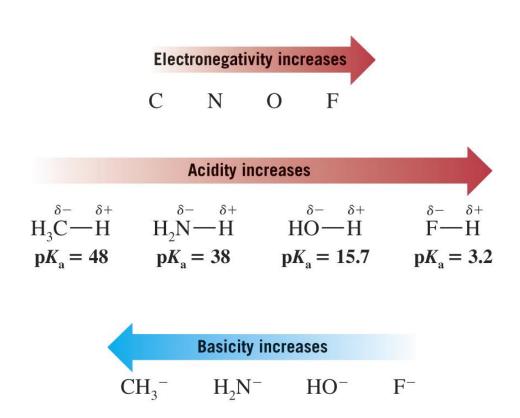
18

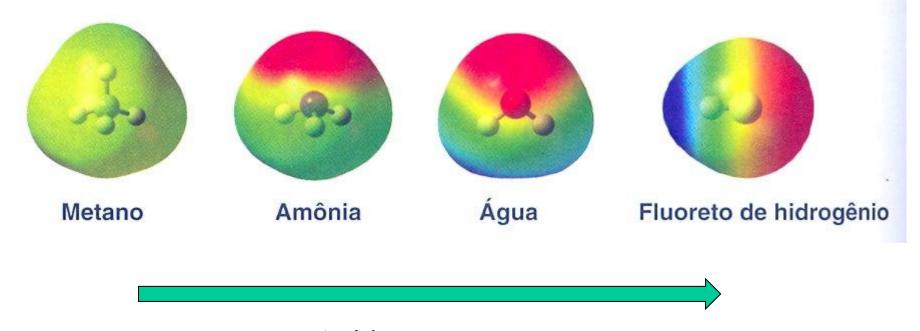
♦ Prevendo o resultado de Reações Ácido-Base

- Reação ácido-base sempre favorece a formação do par ácido/ base mais fraco
 - → O acido/base fraco está sempre no mesmo lado da equação
- Exemplo
 - → Ácido acético reage com hidróxido de sódio para favorecer em muito os produtos


A reação ocorre porque há formação de água, um ácido fraco e também porque o íon carboxilato é estabilizado por ressonância.

- Solubilidade em Água como um Resultado da Formação de Sal
 - → Compostos orgânicos insolúveis em água podem algumas vezes tornarem-se solúveis pela sua transformação em sais
 - → Ácidos carboxílicos insolúveis podem tornarem-se solúveis em solução aquosa de hidróxido de sódio


→ Aminas insolúveis em água podem tornarem-se solúveis em solução aquosa de cloreto de hidorgênio


♦ O Relacionamento Entre Estrutura e Acidez

- → Acidez aumenta decendo a fila da tabela periódica
- → A força da ligação ao hidrogênio diminui descendo a fila e contudo a acidez aumenta

- → Acidez aumenta da esquerda para a direita em uma fila da tabela periódica
- → Aumentando a eletronegatividade dos átomos polarizam a ligação ao hidrogênio e também estabilizam melhor a base conjugada

Acidez aumenta

Chapter 3 23

Acidity increases within a given column (bond strength effect)

Revendo a Tendência de Acidez

Acidity increases within a given row (electronegativity effect)

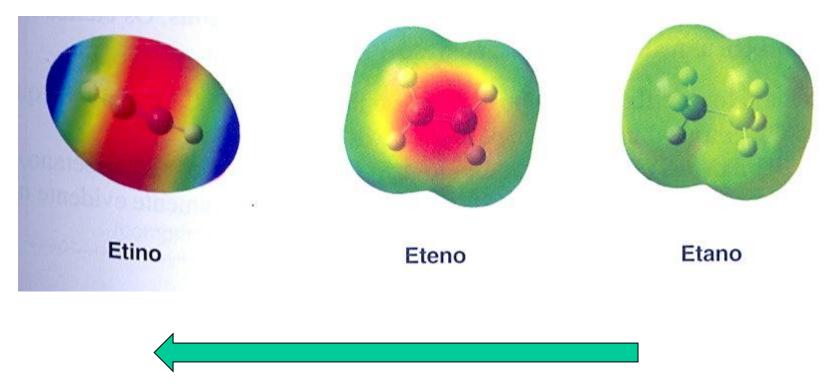
hydride pK_a

$$\mathbf{N}\\ (\mathrm{H_2N}\mathrm{-\!H})\\ 38$$

Se

(HSe-H)

Cl


-7

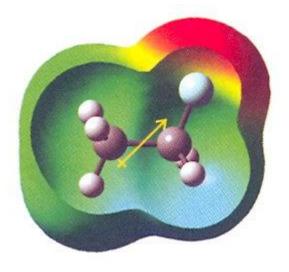
♦ O Efeito da Hibridização sobre a Acidez

- Hidrogênios conectados a orbitais com maior caráter s serão mais ácidos
 - → Orbitais s são menores e mais próximos do núcleo do que os orbitais p
 - → Ânions em orbitais híbridos com maior caráter s estarão mais perto do núcleo e mais estabilizados

$$HC \equiv CH > H_2C = CH_2 > H_3C - CH_3$$

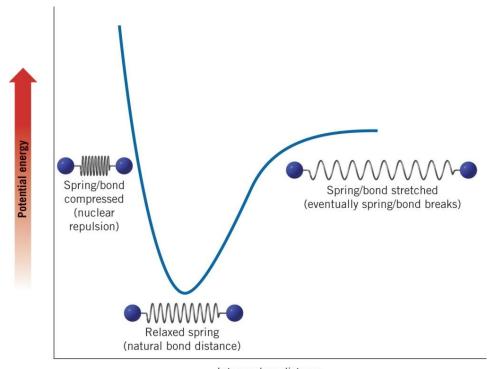
$$H_3C-CH_2:^->H_2C=CH:^->HC\equiv C:^-$$

Acidez aumenta


Chapter 3 26

♦ Efeitos Indutivos

- → Efeitos eletrônicos são transmitidos através do espaço e através das ligações de uma molécula
- → No fluoreto de etila a eletronegatividade do fluoro direciona a densidade eletrônica para fora do carbonos
 - Fluoro é um grupo retirador de elétrons (electron withdrawing group EWG)
 - O efeito torna-se fraco aumentando a distância ao átomo eletronegativo


$$\begin{array}{ccc}
\delta^{+} & \delta^{+} & \delta^{-} \\
CH_{3} \rightarrow CH_{2} \rightarrow F \\
\mathbf{2} & \mathbf{1}
\end{array}$$

Fluoreto de etila mostrando seu momento dipolo dentro de uma vista em corte do mapa de potencial eletrostático na sua superfície de van der Waals.

♦ Trocas de Energia nas Reações

- → A energia cinética é a energia de um objeto em decorrência de seu movimento
- → Energia potencial é a energia armazenada
 - A maior energia potencial de um objeto menor será a sua estabilidade
- → A energia potencila pode ser convertida em energia cinética (e.g. energia de movimento)

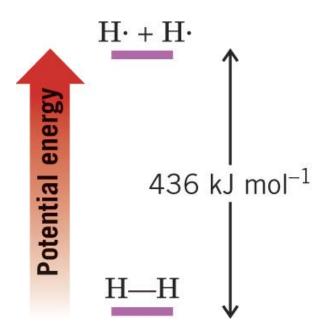
Energia Potencial e Ligações Covalentes

- → Energia potencial nas moléculas são estocadas na forma de energia da ligação química
- → Entalpía △Hº é uma medida da alteração da energia em ligações químicas em uma reação

→ Reações exotérmicas

- Energia potencial nas ligações dos reagentes é maior do que a dos produtos

→ Reações Endotérmicas


- $P \Delta H^o$ é positivo e calor é absorvido
- A energia potencial nas ligações dos reagentes em menor do que a dos produtos

Quanto maior a energia de ligação maior é a energia estocada.

Exemplo: Formação de H₂ a partir de átomos de H

- → Formação de ligações a partir de átomos é sempre exotérmica
- → A molécula de hidrogênio é mais estável do que átomos de hidrogênio

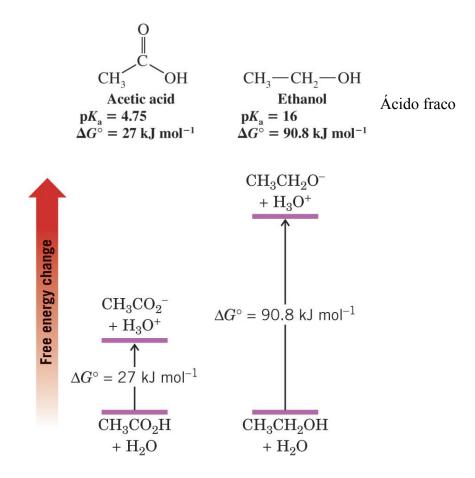
$$H \cdot + H \cdot \longrightarrow H - H$$
 $\Delta H^{\circ} = -436 \text{ kJ mol}^{-1}*$

♦ O Relacionamento Entre a Constante de Equilíbrio e △*G*°

- △Gº é a troca de energia livre padrão de uma reação
 - → Esta é a troca global de energia de uma reação
 - → Ela está diretamente relacionada à constante de equilíbrio de uma reação
 - ₱ R é a constante de gases (8.314 J K⁻¹ mol⁻¹) e T é medida em kelvin (K)

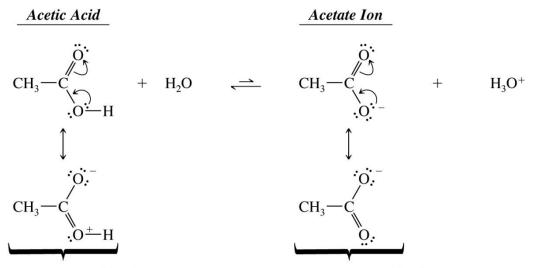
$$\Delta G^{\circ} = -RT \ln K_{\rm eq}$$

- → Se ∆G° for negativa, produtos são favorecidos no equilíbrio (Keq>1
- → Se ∆G° for positivo, reagentes são favorecidos no equilíbrio (Keq<1)
- → Se $\triangle G^{\circ}$ for zero, produtos e reagentes são igualmente favorecidos (Keq = 0), e a reação está em eqjuilíbrio químico.


Estado padrão: 273 K e 1 atm

 \rightarrow $\triangle G^o$ engloba tanto trocas de entalpia ($\triangle H^o$) e trocas de entropia ($\triangle S^o$)

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$


- → ∆Hº está associada com trocas de energia de ligação
 - P Se ΔH° é negativo (exotérmico) isto faz uma contribuição negativa ao ΔG° (produtos favorecidos)
- \rightarrow ΔS^{o} está associado com a ordem relativa de um sistema
 - Mais desordem siginifica maior entropia
 - Um ∆Sº positivo significa um sistema que está indo de mais ordenado para menos ordenado
 - P Um ΔS° positivo implica numa contribuição negativa para ΔG° (produto é favorecido)
 - T ∆Sº representa a energia que não é aproveitada pelo sistema
- → Em certos casos ΔS^o é pequeno e ΔG^o é aproximadamente iqual ao ΔH^o
- → Observe que a temperatura absoluta (T) pode ter uma contirbuição importante sobre a reação.

- ♦ Acidez de Ácidos Carboxílicos
 - Ácidos carboxílicos são mais ácidos do que álcoois
 - → Desprotonação é desfavorável em ambos os casos mas muito menos favorável para o etanol

• Explicação baseada em efeitos de ressonância

- → Ambos ácido acético e acetato são estabilizados por ressonância
 - Acetato é mais estabilizado por ressonância do que o ácido acético

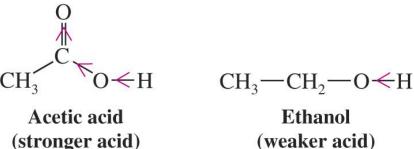
Small resonance stabilization

(The structures are not equivalent and the lower structure requires charge separation.)

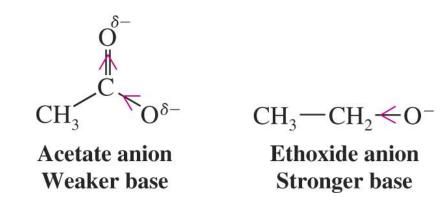
Larger resonance stabilization

(The structures are equivalent and there is no requirement for charge separation.)

- → Nem o etanol nem seu ânion é estabilizado por ressonância
 - P Não há diminuição do ∆Gº para a desprotonação


$$CH_3$$
— CH_2 — \ddot{O} — $H + H_2O$ $\stackrel{\rightharpoonup}{\longleftarrow}$ CH_3 — CH_2 — \ddot{O} : $^- + H_3O^+$

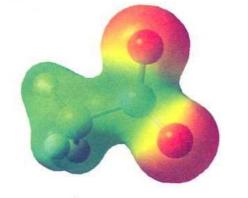
No resonance stabilization


No resonance stabilization

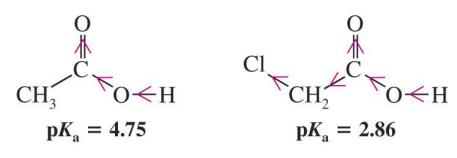
Explicação baseada em efeito indutivo

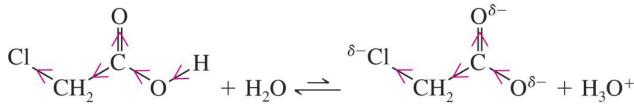
→ No ácido acético o grupo carbonila altamente polarizado direciona sua densidade eletrônica para longe do hidrogênio ácido

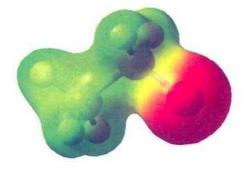
→ Também a base conjugada do ácido acético é mais estabilizada do que o grupo carbonila


A carga maior sobre o oxigênio do etóxido atrai mais o H do que o O do acetato, e portanto, o etanol é menos ácido do que o ácido acético.

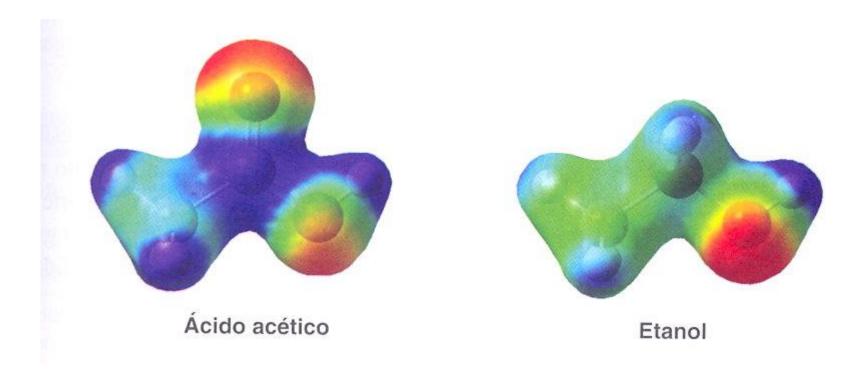
Acidez comparativa, ambos

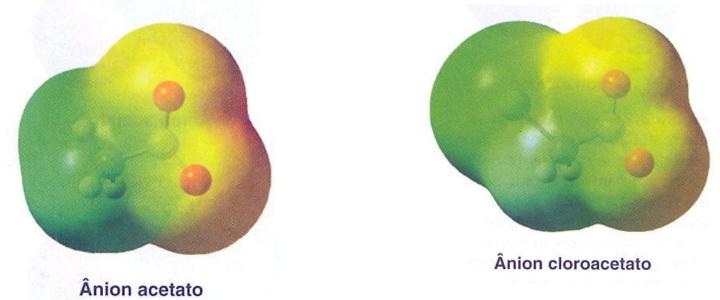

são fracos mas etanol é um


♦ Efeitos indutivos de Outros Átomos


- → O grupo cloro é eletroretirador o que torna o ácido cloroacético mais ácido do que o ácido acético
 - P O próton hidroxila é mais polarizado e mais ácido
 - A base conjugada é mais estabilizada

Ânion acetato




Ânion etóxido

A carga negativa no acetato é mais dispersa do que no ânion etóxido.

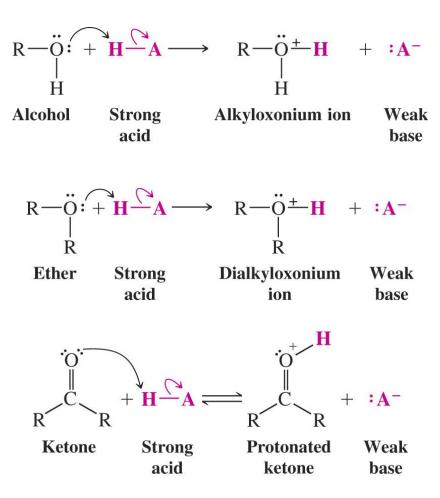
Mapas de potencial eletrostático representando aproximadamente a superfície de densidade de ligação para o ácido acético e o etanol. A carga positiva no carbono da carbonila do ácido acético é evidenciada pela cor azul no mapa em comparação com o carbono da hidroxila do etanol. O efeito indutivo retirador de elétrons do grupo carbonila nos ácidos carboxílicos contribui para a acidez desse grupo funcional.

Chapter 3 37

Os mapas de potencial eletrostático para os íons acetato e cloroacetato mostram

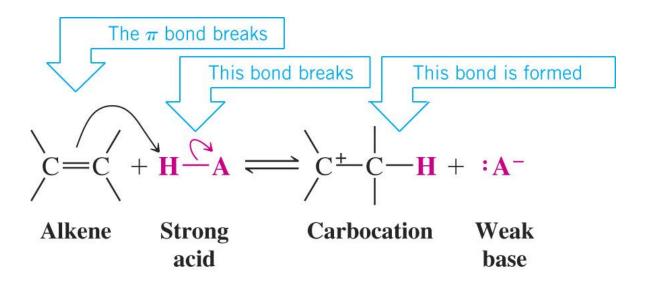
a maior capacidade relativa do cloroacetato em dispersar a carga negativa. $CI \longrightarrow CH_2 \longrightarrow CH_$

Chapter 3 38


♦ O Efeito do solvente na Acidez

- → Valores de acidez na fase gasosa são geralmente muito baixos
 - É difícil separar os íons dos produtos sem a presença de moléculas de solvente para estabilizá-los
 - P Ácido acético tem p K_a de 130 na fase gasosa

- → Um solvente prótico tem o hidrogênio ligado a um átomo eletronegativo tal como oxigênio ou nitrogênio
- → Solvatação tanto do ácido acético e do acetato ocorre em água embora o acetato seja mais estabilizado pela solvatação
 - Esta solvatação permite ao ácido acético ser mais ácido em água do que na fase gasosa


♦ Compostos Orgânicos como Bases

→ Qualquer composto orgânico contendo um átomo com um par não compartilado (O,N) pode atuar como uma base

\rightarrow Elétrons π podem também atuar como bases

ho Elétrons π estsão fracamente presos e disponíveis para reagir com ácidos fortes

♦ Ácidos e Bases em Soluções Não-Aquosas

- → Água tem um efeito de nivelamento para ácidos e bases fortes
- → Qualquer base mais forte do que hidróxido será convertido para hidróxido em água

$$H - \ddot{\odot} - H + \ddot{N}H_2 - \longrightarrow H - \ddot{\odot} = + \ddot{N}H_3$$

Stronger acid Stronger base Weaker base Weaker acid $pK_a = 15.7$

→ Amideto de sódio pode ser usado como uma base forte em solventes tal como NH₃ líquida

H—C
$$\equiv$$
C $\stackrel{\cdot}{\longrightarrow}$ H $\stackrel{\cdot}{+}$:NH₂ $\stackrel{\cdot}{\longrightarrow}$ H—C \equiv C: $\stackrel{\cdot}{=}$ +:NH₃

Stronger acid Stronger Weaker Weaker base acid (from NaNH₂)

→ Reagentes Alquil-Lítio em hexano são bases muito fortes

O alquil-lítio é preparado a partir de brometo de alquila e lítio metálico

H—C
$$\equiv$$
C $\stackrel{\longleftarrow}{=}$ H $\stackrel{+}{=}$:CH₂CH₃ $\stackrel{\text{hexane}}{\longrightarrow}$ H—C \equiv C:- + CH₃CH₃

Stronger acid Stronger Weaker Weaker p $K_a = 25$ base base acid p $K_a = 50$